HINTS

Tetrominoes, page 4

There are 5 distinct tetrominoes.

Pentominoes, page 5

There are 12 distinct pentominoes.

Polyomino Names, page 6

Eight of them can be folded into a box. If you have trouble finding them, experiment with one-inch grid paper and scissors.

Making Polyomino Rectangles, page 8

1. There are 25 rectangles. Their sizes are:

4 x 7
4

2. Use the monomino in the 3-by-9 rectangle.

Pentomino Family Relationships, page 11

- 1. Look at your tetromino family trees.
- Students may find it helpful to draw a full family tree for each of the pentominoes.

Hexomino Envelopes, page 15

There are 6 hexomino envelopes.

Classifying the Hexominoes, page 16

Eleven can be folded into cubes. If you have trouble finding them, use one-inch grid paper and scissors to experiment.

Tiling Rectangles, page 27

- 1. One of them does not tile any rectangle.
- 2. The Y pentomino tiles a 5-by-10 rectangle.

Doubled Pentominoes, page 32

Use one N in each of these doubles: N, V, W.

Perimeter 10, page 34

1. There are 6 of them.

Perimeter-Area Predictions, page 36

- 1. There are 5 different shapes possible.
- 2. There are 10 different shapes possible.
- 4. Look at the table on page 35. Double each area number and then look at the corresponding longest perimeter. Find a pattern.

Eyes, page 38

2. Only 1 pentomino has an eye.

One-Sided Polyominoes, page 40

3. There are 18 of them.

Polyrectangles, page 41

- 1. There are 3 of them.
- 2. There are 9.
- 3. There are 21.

Polytans, page 42

- 1. There are 4 of them.
- 2. There are 14.